THE 2-AZA-COPE N-ACYLIMINIUM CYCLIZATION

Hugo Ent, Henk de Koning and W.Nico Speckamp^{*}, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.

The 2-aza-Cope N-acyliminium ring closure is shown to proceed in a stereoselective fashion via the primary N-acyliminium intermediate <u>1B</u>. The latter ion can also be generated from the open hydroxymethyllactam 6b.

The recently reported aza-Cope variant¹ of the N-acyliminium induced heterocyclization² is assumed to proceed via ring closure of the primary N-acyliminium ion <u>1B</u>. The transient nature of such a species, however, thusfar precluded the characterization of the corresponding carbinollactam <u>2</u> and its subsequent conversion into the pyrrolizidine system. A similar case in which the allene derivative <u>3</u> was involved³ failed to produce the 5,5-cyclization product upon further reaction. We now report (1) the isolation of <u>2</u> (R = Ph) (ii) its stereoselective conversion into <u>5</u> and (iii) the marked influence of the introduction of a pmethoxy substituent in the aromatic ring. In addition the synthetic conversion of the newly synthesized ring system is described.

Upon cyclization of the hydroxylactam $\underline{4}^4$ in formic acid (r.t., 18 h) and workup⁸ a 1:1 mixture of the isomeric pyrrolizidines <u>5a</u> was obtained in 77% yield, while in addition two minor products, the pyrrolidine 6b (4%) and the indolizidine

7 (7%) were isolated. Hydrolysis of the formates 5a and subsequent chromatographic separation (SiO₂, acetone : $CH_2CI_2 = 2 : 9$) gave the pure alcohols $\underline{5b}-I^9$; m.p. 131-131.5°C; ¹H NMR $\delta(CDCl_3)$: 4.47 (d, J = 8 Hz, H₈), 3.83 (m, H_{1a}), 3.55 $(dd, J = 12 \text{ and } 8 \text{ Hz}, \text{H}_7), 3.22 (dd, J = 12 \text{ and } 9 \text{ Hz}, \text{H}_7), 2.77 (m, \text{H}_6) \text{ and } \frac{5b-II^9}{2};$ m.p. 137-138°C; ¹H NMR $\delta(CDC1_3)$: 4.53 (d, J = 7 Hz, H₈), 3.91 (m, H_{4a}), 3.23 (m, H_7), 2.73-2.88 (2H, m, $H_7 + H_{4a}$). From extensive ¹H NMR analysis it appeared that the <u>cis</u>-stereochemistry of C_{4a} -H and C_{6} -H in both isomers was the same, the difference thus resulting from the configurations at C₈. Upon carrying out the cyclization of $\underline{4}$, using CF₃COOH in CH₂Cl₂ (5°C, 0.5 h), and work-up 53% of the alcohol $\underline{6b}^9$ was obtained; m.p. 125-128°C; ¹H NMR $\delta(CDCl_3)$: 6.53 (d, J = 16 Hz, = C<u>H</u>), 6.15 (dt, J = 16 Hz and 7 Hz, = C<u>H</u>), 4.99 (d, J = 11 Hz, 1H, $C_{H_2}O$), 4.78 (d, J = 11 Hz, 1H, CH_2O , 3.97 (m, H_5) together with 1 : 1 mixtures of isomers of <u>5b</u> (17%) and 5c (27%). Treatment of the alcohol $\underline{6b}$ with HCOOH (r.t., 18 h) gave the 1:1 isomeric mixture of 5a in 84% yield (according to ¹H NMR analysis), thereby indicating the alcohol as the precursor for the intermediate <u>IB</u> in the 2-aza-Cope rearrangement and establishing the proposed pathway. Most significantly the indolizidine 7 is also formed in 8% yield.

The hydroxylactam $\underline{8}^4$ underwent ring closure (HCOOH, r.t., 18 h) solely to the 1:1 formate mixture <u>9a</u> (91%) which could be saponified and chromatographed to the alcohols <u>9b</u>-I⁹; m.p. 138-139.5°C and <u>9b</u>-II⁹; m.p. 103-104°C. CF₃COOH treatment in CH₂Cl₂ (5°C, 0.5 h) also afforded a mixture of the trifluoroacetate <u>9c</u> (69%)

and the alcohol <u>9b</u> (25%), both as a 1:1 mixture of C_8 stereoisomers. Under the latter circumstances no trace of <u>10</u> could be detected. In view of the marked difference in the cyclizations of <u>4</u> and <u>8</u> we decided to follow both reactions in the time, the results of which are given in tables I and II.

TABLE I^a

Cyclization of $\frac{4}{1.3}$ (1.3 mmol) in HCO₂H (6 ml) at 20°C

Reaction time	Product composition (mol %; ± 2%)			
(h)	4	<u>6a</u>	<u>5a</u>	7
0.17	84	16	-	-
1	32	56	12	<1
4	4	65	26	5
20	-	27	66	7
68	-	2	88	10

TABLE II^a

Cyclization of $\frac{8}{1000}$ (0.77 mmol) in HCO₂H (5ml) at 20°C

Reaction time	Product composition (mol.%, ± 2%)				
(h)	<u>8</u>	<u>10a</u>	<u>9a</u>		
0.12	65	9	26		
1	16	11	73		
3.5	-	<1	99		
		L ,	ļ		

a Samples were taken, worked up and analyzed by ¹H NMR spectrometry.

As can be judged from the data the reaction of $\underline{8} + \underline{9a}$ is much faster than the reaction $\underline{4} + \underline{5a}$, which is due predominantly to the faster ring closure $\underline{10a} + \underline{9a}$ in comparison with $\underline{6a} + \underline{5a}$. Given the fact, however, that the amount of indolizidine $\underline{7}$ is slowly increasing while ring closure of pure <u>6b</u> also affords $\underline{7}$, the results can be interpreted as good evidence for the existence of a dynamic equilibrium between secondary N-acyliminium ion <u>1A</u> and the primary N-acyliminium ion <u>1B</u>. In case of a fast reaction via <u>1B</u> the pyrrolizidine system is formed; the slow process proceeds via <u>1A</u> to form the indolizidine, presumably via a chairlike six-membered transition state. Since the allylic aryl substituent is not directly involved in the establishment of the equilibrium between <u>1A</u> and <u>1B</u> it may be postulated that this is an intrinsic property of the N-acyliminium intermediate¹⁰.

The pyrrolizidine alcohol <u>9b</u> can be smoothly converted into the unknown dione <u>11</u> via a standard sequence. After elimination of water $(H_2SO_4-AcOH, 70^{\circ}C, 1 \text{ min.})$ the alkene is ozonized $(-78^{\circ}C, CH_2Cl_2; Me_2S)$ to form <u>11</u>⁹, oil; ¹H NMR $\delta(CDCl_3)$: 4.19 (m, H_{4a}), 4.05 (d, J = 19 Hz, H_7), 3.32 (d, J = 19 Hz, H_7), 2.71 (dd, J = 18 and 6 Hz, H_5), 2.18 (dd, J = 18 and 10 Hz, H_5); IR(CHCl_3): 1764, 1686 cm⁻¹ (C=O). Further progress will be reported in due course.

ACKNOWLEDGEMENT. We wish to thank Mr. C. Kruk and his staff for recording the NMR spectra.

LITERATURE AND REFERENCES

- P.M.M. Nossin, J.A.M. Hamersma and W.N. Speckamp, <u>Tetrahedron Lett.</u>, <u>23</u>, 3807 (1982).
- 2. W.N. Speckamp, <u>Recl.Trav.Chim.Pays-Bas</u>, <u>100</u>, 345 (1981).

3. P.M.M. Nossin and W.N. Speckamp, Tetrahedron Lett., 22, 3289 (1981).

4. Hydroxylactams 4 and 8 were obtained in the following manner:

5. C.B. Rose and C.W. Smith Jr., Chem.Commun., 248 (1969).

- 6. O. Mitsunobu, M. Wada and T. Sano, J.Amer.Chem.Soc., <u>94</u>, 679 (1972).
- J.C. Hubert, J.B.P.A. Wijnberg and W.N. Speckamp, <u>Tetrahedron</u>, <u>31</u>, 1437 (1975).
- 8. Usual work-up procedure for cyclizations:

Following evaporation in <u>vacuo</u> of formic acid, the residue is dissolved in dichloromethane and the solution washed with aqueous bicarbonate and with brine, dried over $MgSO_4$, concentrated in <u>vacuo</u> and chromatographed.

- 9. For all new compounds satisfactory $^1{\rm H}$ NMR and IR and in some cases MS and $^{13}{\rm C}$ NMR spectra have been obtained.
- 10. For the aza-Cope rearrangement of secondary N-acyliminium ions see also: D.J. Hart and Y.-M. Tsai, <u>Tetrahedron Lett.</u>, <u>22</u>, 1567 (1981); D.J. Hart and T.-K. Yang, <u>Tetrahedron Lett.</u>, <u>23</u>, 2761 (1982). (Received in UK 16 February 1983)